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We develop a method of general  perturbations mainly 

applicable to satell i te theory. 

ative correction of the frequencies of the angular variables,  

according to Lindstedt 's  technique. 

oped as power se r i e s  of a small parameter  and are closely 

related to those given by von Zeipel ' s  method. They differ 

in  that they a r e  obtained by d i rec t  integration of the differen- 

tial equations of motion so that they can a l so  be developed for  

nonconservative systems.  F o r  a system with three  degrees  

of freedom, we give the differential equations fo r  any order  

of approximation and develop explicit relations up to the third 

o rde r  in  the small parameters .  

The basic principle is the i te r -  

The solutions a r e  devel- 
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1 e INTRODUCTION 

It  is well known that the classical  method of Poincare' and von Zeipel 

applies to conservative Hamiltonian systems.  Moreover,  the construction of 

a generating function f o r  high-order perturbations may  become ve ry  involved, 

especially when we deal with short-period t e r m s  (Kozai 1962). 

struction of a n  algorithm suitable for  automatic symbolic processing is not 

a t r ivial  task and has been developed only in cer ta in  problems and to a maxi- 

mum of the second order.  Another nontrivial task is the relation between 

initial conditions and the element constants as defined by Brouwer (1959) and 

Garfinkel (1  959). I n  his  doctoral  dissertation, the author (1 965) presented a 

sketch of a d i rec t  evaluation of von Zeipel ' s  series based on the work of 

Poincarh (1893). 

remarkable  progress  in  automatic processing of algebraic symbols have 

shown that such a method would have grea t  advantages over the classical  

ones. We shall  deal  initially with one-dimensional systems, in order  to 

explain better the process  of solution. 

dimensional systems. 

degrees  of f reedom is straightforward. 

degree of f reedom has, in  addition to  other purposes, that of separating the 

problem of convergence of s e r i e s  in  a small parameter  f rom that introduced 

by smal l  divisors.  The applicability to automatic processing der ives  mostly 

f rom the fact  that we can obtain the equations that produce the t e r m s  co r re s -  

ponding to the - nth o rde r  of approximation. The operations needed for  purely 

analytic development are  multiplication of F o u r i e r ' s  s e r i e s  and integration 

of such s e r i e s  in time. 

Four i e r  analysis of the disturbing function and its derivatives. 

operations can be satisfactorily developed by any high- speed electronic 

calculator. 

method are much m o r e  cumbersome and, in  general ,  represent  systems of 

par t ia l  differential equations (Giacaglia 1964, 196 5). 

The con- 

Since that time, the need f o r  a high-order solution and the 

We then develop a theory fo r  three-  

The generalization to  a sys tem with m o r e  than three 

The study of a system with one 

F o r  semianalytic development, we need also the 

Al l  these 

It should be noted that the general  equations fo r  von Zeipel ' s  

2 



2. ONE DEGREE O F  FREEDOM 

Although it is not s t r ic t ly  necessary,  we will consider a Hamiltonian 

system, and call I the coordinate (angular variable) and L the generalized 

associated momentum (action variable). 

i s  given by 

The negative of the Hamiltonian 

where E is a constant dimensionless parameter  defined in ( 0 ,  l ) ,  but usually 

small compared with unity. 

We suppose F to be analytic in the neighborhood of Lo  f o r  I L - L o /  < R 

(where R is a given number), to be capable of being developed in a convergent 

Four i e r  s e r i e s  in  8 ,  and to be periodic of period 21r in this variable. 

more,  we suppose as usual  that 

Fu r the r -  

2Tr 

which can always be achieved by assimilat ion of the "secular" par t  of 

Fo, which in general  might depend on E .  

altogether in the process,  with no confusion in the final outcome. 

into 

This dependence is disregarded 

The differential equations pertinent to F (L ,  1 )  a r e  
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or ,  according to Eq. ( l ) ,  

a a$- 
, Q = N ( L )  - E  - 

aL 
* &  

aQ L = E  

where 

a F O  N ( L )  = - - aL 

( 3 )  

(4) 

W e  consider the new variables 

where v = v ( L  ;E ) is an  unknown function of a constant L 0 0’ 
to the initial conditions. Moreover, the function v ( L  ;E ) is supposed to be 

analytic in the neighborhood of E = 0; that is, it can be developed in convergent 

power s e r i e s  

which is related 

0 

2 v = v  t E V  + E  v z t  ... , 
0 1 

where 

v = v ( L )  . k k O  

By hypothesis, we can wri te  

[+(L) cos kl t B (L) s in  k Q ]  , k 
k# 0 

pa, B a r e  analytic where the integer k takes all values f r o m  - co to  + CXI, and 

functions of L. 
k 
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In t e r m s  of the new variables x and y, Eqs. ( 3 )  can be written 

a $  
aL * 

.;T = N(L) - v ( L ~ ; E )  - E - 

We have 

- =  aQ k(-+ sin kQ t B.. cos kQ)  
k 

a 3  
k# 

k# 

where Af’ = dn+/dLn , and similar notation is applicable to other functions. 

Hence, Eqs. (7) can be writ ten as 

& = E k[-%(Lo t x) s in  k(w t y) t Bk(Lo t x) cos k(w t y)] 
k#) 

$ = N(LO t x) - v(LO;e) 

k# ( 9 )  

The next s tep is the development of the right-hand members  of Eqs. (9) 
in double Taylor’s  s e r i e s ,  in the neighborhood of ( L o , w ) .  We have 

5 



and 

n s in  IT - (k l  - n ? )  . (kl) = ( - l ) n  k dn s in  
cos cos 

Therefore,  Eqs. (9)  become 

c o n  
n-m m 

X = E  X n-m, m (a, L o b  y 
n=O m=O 

co n 

n= 0 n=O m=O 

where 

and X and Y a r e  defined by the Four i e r  s e r i e s  n-m, m n-m, m 

X [ - e - m ) ( L o )  s in  (kw - m-)  Tr t Bp-m)(Lo)  cos  (ko - mz)]  IT 
2 

IT ( n - m t l )  IT (Lo) cos (kw - m Z )  t Bk (Lo)  sin (kw - m z)] 
(12) 
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The right-hand members  of Eqs. (10) converge provided 

with a properly chosen positive quantity M. 

m e t  if x and y can be defined as purely periodic functions of w, with bounded 

coefficients. The method consists of constructing such functions, by 

successive approximations, in the f o r m  of F o u r i e r  se r ies .  

(1 0) have been considered by McMillan (1 92 0), who studied the convergence 

of solutions x, y that a r e  power se r i e s  in E .  

x and y to be periodic, he could only prove convergence f o r  a finite interval 

of time. 

functions, it is possible to prove the convergence of their  s e r i e s  representa-  

tion, provided E is small enough and some values of L a r e  excluded. 

The proof follows the l ines described by Moser  (1967). 

selves  to showing that it is possible to  construct the formal  s e r i e s  

These requirements will be 

Systems of type 

Because McMillan did not require  

Since we will show that x and y can be constructed as periodic 

0 
We shal l  limit our- 

2 v = v  t E V  + E  v t . . .  , v = v ( L )  , 
0 1 2 k k O  

2 
X = E X + E X + . . .  , x = x k ( L o , w )  , 1 2 

If these s e r i e s  a r e  substituted into Eqs. ( l o ) ,  we obtain 

co c o n  
n 

E P n-m, m 
p= 1 n=O m=O 

7 



n 
a c  n P "  = - E P V  t 

E yP P 
p= 1 p= 1 n= 1 

00 co s l t . .  . t s n - n  
x c . . .  c x ... x S E - [ ax -  V I  , 

1 n S 
s = 1  s =1 1 n 

(1 3 )  

where we have se t  v - - a. = - F f ) ( L o )  and the expression [k(X-  Y)] indicates 

the right-hand member  of Eq. (12) where the Y ' s  a r e  substituted for  the XIS. 

By equating coefficients of the same powers of E in both s ides  of Eqs.  

(12) and (1 3) ,  we obtain the differential equations for  the unknowns %, yk, 

v (k = 1,2,  3 ,  . . . ). It follows immediately that k 

p-1 n 

t r l+ .  . . t r  =p-I m 

2 P = c c x  n-m, m c 
s t . .  . t S n - m  1 n=O m=O 

x . . .  x Y1 - * Y r  S n-m m 

P 
= - v  +can x . .. x S - [Gp(X- Y)] , (15) 

n P 
n= 1 s l t . .  . t s  =p  

+P 
n 

where s 1 1 ,  r 2 1 ( j  = 1, . , . , n-m; k = 1, . . . , m) and for  p > 1, n 1  1. j k 
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In par t icular ,  we have 

(1)  p =  1: 

Gl = x 
0 9 0  

- 
0, 0 . $, - - v 1  t alxl  - Y 

a r e  purely periodic, the choice fo r  v 1  is w1 = 0. The 
0, 0 

Since X and Y 

functions 
0 9 0  

x = - 1 j X o , o  dw 
1 v  

will then be purely periodic, with no constant term.  In fact, 

and 

o r  

where it is to be noted that to a f i r s t -order  approximation 

v =  v t E V  = v o =  - Fb. 0 1 

9 



(2)  p = 2: 

- 
&2 - xl, oxl xo, 1y1 

- 2 
1 2  2 1  - y l a o x l  - y o , l y l  ' 

y 2 - - v 2 t a x  t a x  

The right-hand member  of 1; 
orde r  to  see  this, we  first note that 

cannot contain t e r m s  independent of a. In 2 

- 
and consider a par t icular  argument 8 = ko in g L o , o ) .  Constant t e r m s  can 

only arise f rom combinations cos2 8 o r  sin2 8. W e  have 

ye = a cos 8 t b s in  8 

and therefore 

1 x1 = v(a  cos 8 t b s i n  8 )  

Y1 - - - ( Y t L  v C ) ' ( a s i n € l - b c o s O )  aL 

- 
X = k(-a '  s in  8 t b' COS 8) 130 

-2 X = - k (a cos 8 t b s in  8 )  . 
0 ,  1 

10 



Therefor e, 

- 
g2(f3) = k (a cos 8 t b s i n  e)(-  a’ sin 8 t bf COS e)  

V 

k Fg 
t- (a s in  8 - b COS e)(a cos 8 t b sin e)  2 

V 

- 
t V (a’ s i n  8 - b’ COS @)(a cos 8 t b sin e) 

which proves our statement. 

I t  follows that x2, defined by 

is f r e e  f r o m  secular  te rms .  W e  define 

2 
2nv 2 = 5 (a2X1 - y l , o ~ l  - Yo, l y l )  do , 

0 

and it is easi ly  seen that each par t  of the integrand will contribute to v2. 
With such a definition of v the function 2’ 

( -  v t y 2 = ;  j 2 
E 

will be f r e e  f r o m  secular  

2 
1 2  2 1  - y l ,  oxl - yo, 1y1) a x  t a x  

te rms .  W e  note that, for  a non-Hamiltonian sys-  

tem, the right-hand member  of xn will in  general  contain constant t e r m s  

producing secular  perturbations, that is, t e r m s  l inear  in t ime ( o r  3. In 

such cases ,  except f o r  very  special  situations, the solution will converge only 

fo r  a limited interval of t ime, 

11 



(3) p =  3: 

* -  2 2 
x3 - x l ,  OX2 -I- xo, 1y2 -I- xl,  lXIY1 x2, oxl + xo, 2y1 

and 

3 = - v  t a x  t 2 a x x  t a x  - [&3(X-Y) ]  . 
9 3  3 1 3  2 1 2  3 1  

The task of showing that the right-hand member  of H3 contains no constant 

terms follows the same reasoning we applied to  the second-order solution. 

F o r  the general  proof we refer  to  the l i t e ra ture  (Giaeaglia 1967). 

F r o m  Eqs. (14) and (15) we see  that in general  we can wri te  

Equation (1 8) gives x 

L and o. Moreover, if we know these functions, v is determined as 

if xk, yk (k = 1, 2, . . . I n- 1) a r e  known as functions of n 

0 n 

2vv = f Yn dw , n 
0 

and we then obtain y 

recurrence.  The s e r i e s  obtained, truncated at the nth stage, a r e  

This completes the description of the solution by n' 
- 

2 3 n t l v  - + E  v + E  v + . . . + E  ntl ( n t 1 ) -  v~ 2 3 V 

n 
5-k ... + E  xn 2 

= E X  + E  ( n) 1 X 

2 n = E y l t E  y 2 t  ... + E  y, , 
y(n) 

12 



where the function v is included because, as is evident f r o m  Eqs .  (20) and 

(19), it does not require  that we know x 

approximation, the final solution is given by 

n t  1 
To this o rde r  of ( n t l )  and Y (ni-1)’ 

and the frequency v is known to an approximation one o rde r  higher. 

(21) a r e  implicit relations between the initial conditions L(O), I (0 )  and the 

constants of integration L 

tion. 

Equations 

p. More will be said about this in  the next sec-  0’ 

3. THREE DEGREES OF FREEDOM 

In the subsequent development we will deal  with a m o r e  general  

Hamiltonian of the f o r m  

and assume that f can be developed i n  convergent power s e r i e s  of E Thus, 

where L and Q indicate the t r iplets  (L 

The process  to  be developed is a generalization of what we did f o r  one- 

dimensional systems. Each F ( L , I )  can be writ ten as 

Lz, L3) and (I I , I  ), respectively. 
(cL1 +’ 1’ 1’ 2 3 

P -  - 

1 3  



where p = 1,2 ,  . . . , and 1 kl 1 t I k2 I t I k31 f 0. 

we will write (23) as 

To shorten the notation, 

[A(p;k) cos k 1 t B(p;k) s in  k k ]  , 
i u M w  *I w 

F (L,B) = 
P - -  

E 

and the dependence of A and B upon L is implicitly admitted. 

developments, L (L 

In the following 
rn 0 0 0  

1' 3 L2, L ), a t r iplet  of constants of integration, will 0 - 
be substituted for  L. 

Nh 

The differential equations to  be integrated a r e  

00 

am: t . . .  = E -  + E  - 2 aF2 
am: 

& aF1 
am: am: L i =  E 

I I I p= 1 I 

and 

fo r  i = 1 ,2 ,  3. 

The transformation 

0 x = L i  - Li i 

y i =  m i  - 0. = m i  - (Vit  t pi) , i =  1 , 2 , 3  
1 

14  



gives 

a F  
P P  

00 

a i  : x. = E 
1 

p= 1 I 

* a F O  
y i =  - v i - q  - 

The functions 

- N.(L) 
l w  

aF 0 
aLi 

- - -  

a F  
2 = c ki[ - A(p;k) s i n & *  P t B(p;&) cos k A] a i  w w/A w 

k 
w 

a F  

2 aLi = c [A(p;k) cu\ cos t B(p;k) &"A s i n &  * J!] , 
k _ _  
WI 

i =  1 , 2 , 3 ;  p =  1 ,2 ,  ... 
0 

are  to  be developed in Taylor 's  series in  the neighborhood of (L ,a). 

the following general  relation: 

We have 
M w n  

M 

which, applied to  the above functions, gives 

n-i3 c o n  il iz i3 0 
iz, i3 x1 x~ x3 N.(L t x) = 

1 c "  - 
n=O i = O  i z = O  3 

1 5  



where  il - and - - l2 - l3’ 

F r o m  now on we wil l  d r o p  the s u p e r s c r i p t  0; that is, we will  w r i t e  L instead 

of L . Therefore ,  
w 0 

lllM 

1 
F O  

2 i3 ’ 8 L i 8 L 1  8L2 8L3 
i il 

( i) Z .  
11, i2, i3 

w h e r e  il = n - i3 - i2. 

Moreover ,  

m-Q 3 n - m - j  n- m 

p;ji, j,, j3;Q 1, Q 2 ,  Q 3  
n=O m=O j3=0 j2=0 Q = O  Q = O  3 2 

j l  j2  j, Q 1  Q 2  Q j  

1 x2 x3 y1 y2 y3 x x  

w h e r e  

j,  = n - m - j 2 - j ,  , 

Q 1 = m - Q 2 - Q 3  , 

16 



and 

Finally, 

m-l -1 2 3 l 2  l 3  
k l  k2 k 3  

B(p;k) c o s  (k w - m z )  . ‘1 an-m 

I . + +  

t 
j ,  j2 j 3  

aL1 aL2 aL3 

where 

cos (k . 
w 

w w -m:) 

17 



1 

and ( j l , l  ) a r e  defined a s  before. 1 

We now introduce the se r i e s  

co 
s -1  (s) x = E  E X i i 

s= 1 

r-1 (r) 
9 ( 3 3 )  

r= 1 

which a r e  to  be substituted into the above developments and then into differ- 

ential Eq. (26).  The resul t  is 

co 00 co co 

X . . .  2 . . .  2 . . .  2 . . .  
a, = 1  a, =1 p l = l  p.  = 1  y l = l  y .  = 1  x l = l  

j l  J2  J 3  1 

. .. ... 

“ l 3 =  
x = 1  p, = 1  I 1  1 

1 8  



a t . .  . f a .  t p l t . .  - t p j  t y l + .  . . t y j  
'1 2 3 1 

E 

X l t . .  . t X  f p l t . .  . t p Q 2 t v l t . .  . t v  - n  
X E  11 Q 3  

a n d  

3 n- i 
00 co n 

n i.i= - Ex E k - l  Jk) i t c c c z ( i )  i la i2, i3 E 

n=O i - 0  i - 0  
3- 2- 

k= 1 

co co co co co 

p i  =1 y = 1  yi  =1 
3 1 a. = 1  p =1 

2 1 a = 1  
1 1 1 

a t . . . t a i  t p l t  . . .  t P i  t y l t . m . t y i  - n  
1 2 3 

1 
X E  

1 9  



where, as already defined, 

j l = n - m - j 2 - j 3  , 

Q 1 = m -  Q 2  - Q 3  > 

i l = n - i  2 - i 3  . 

Equations ( 3 4 )  and (35), despite the cumbersome aspect due to the i r  complete 

generality, give simple relations for the equations that define xi 

k = 1 , 2 ,  . . . , by recurrence.  These a r e  readily found to be 

(k) (k) 
yi , 

n-m- j N N-p n n-m 
.(N) - x -  i p ; j la  j,, j3;1 1> 12, Q 3  

p=l  n=q m=O j3=0 j2=0  l 3 = 0  l 2 = 0  

X c 

and 0, N-pa where q =  1 - 6 

3 n- i N n  
* (N)  + - JN) + 
Y i  1 'il, i2, i3 

(i) 

n=l  i3=0 i2=0 alt*. . Sai t P l t . .  t y l t . .  . t y i  = N  
1 2 3 

2 0  



where we have already defined 

and 

i l = n - i  - i 3  , 2 

- j ,  - n -  m - j2  - j, 

1 1 = m - 1 2  - 1 3  . 

Next, we give Eqs. (36) and (37) f o r  N = 1 , 2 , 3  ( third-order  solution). 

First Orde r .  

( i) 
- yl;o, 0, o;o, 0, 0 ’ 

and 

21 



dt  d t  - - - a F 1  
a% aLi aLk 

k= 1 

Up to the f i r s t  o rder ,  

Second Order ,  

3 3 

x2;o, 0, o;o, 0,o ( 4 0 )  

3 3 

e ( 2 )  is As was done for  the one-dimensional case,  we can easi ly  show that x. 

f ree  f r o m  constant t e rms ;  that is, x!‘) is purely periodic. 
1 

W e  can obtain 

the constant v12’ by averaging the laLt five expressions in the right-hand 

member  of ?i2) o v e r o ,  from 0 to ZIT. 

22 



Third  O r d e r .  

3 

23 



The above relations give a complete third-order  solution with all infor- 

mation needed to compute the frequencies v up to a fourth-order accuracy 

in the small parameter .  

equations for  x. *(n )  

such equations as (36) and (37) can easily be developed by an electronic com- 

puter, e i ther  in algebraic form or  in numerical  form.  In fact, since the 

solution of order  n - 1 gives the frequency up to o rde r  n, the right-hand 

m e m b e r s  of Eqs.  (36) and (37) can be harmonically analyzed by numerical  

means to give the solution co r rec t  to the nth o rde r  in  the fo rm of Four i e r  

series with numerical  coefficients. This, of course,  implies a knowledge 

of the constants L , p. 

i 

But the important point is that 

F r o m  simple inspection we can write the differential 

*!n) f o r  any value of n. 
1 ’ Y l  

0 In the next section we discuss  some of these mat te rs .  
m a l * ” . ”  

4. SEMINUMERICAL APPROACH 

In  severa l  problems of orbit  determination, for  example, those involving 

artif icial  satell i tes,  it is not possible nor pract ical  to  develop the disturbing 

function analytically in t e r m s  of the m e a n  anomaly of the disturbed body, 

since this would require  s e r i e s  expansions in the eccentricity and the sine of 

the inclination, which might not be small with respect  to unity. 

however, does not mean  that a numerical  Four i e r  analysis of the disturbing 

function cannot be obtained. 

coefficients can  usually be computed, with l i t t le effort, to any desired degree 

This, 

Such trigonometric s e r i e s  with numerical  

24 



of precision. 

involving high eccentricity and inclination, we must  consider F(k ,E) given 

by a trigonometric series, with numerical  coefficients. 

F (L  ,o) a r e  then selected by inspection of those coefficients. F o r  particu- 

lar values of L1, L2, Lg, p,. p2, p,, which define the initial conditions, 

the solution requi res  a process  of differential orbit improvement. 

In order  to apply the theory described in this paper  to  problems 
0 

The functions 
0 

P -  - 0 0 0  

The s e r i e s  solutions given by this method can be represented as 

8 .  1 1  = v.(L 0 ; € ) t  t p i t  2 E bF$Lo) cos (k w -  * a) 
p=l Ikl-(M 

w P 

t D(i) P;$ (Lo) s in  VA,  k - E] , (45) 

where o = vit  t pi, and N is related to the precis ion achieved by iteration. 

At t = 0, Eqs.  (44) and (45) reduce to 

25 



(47) 
0 

t D(i’ (L ) s in  (k 0 Pi$ - K n v u  

0 and for  E = 0, pi = l i ( 0 ) ,  .,Po = Li(0), which gives a zero-order  solution to 

pi, L o  in t e r m s  of the initial conditions. The (n+l ) th  - order  is obtained by 

recur rence  f rom the inversion of Eqs. (46) and (47); that is, 
i 

t E3(i) (Lon) s in  (k pn;] (48) p;k - r Y . -  

t D(i) (Lon) s in  (k & l U  - prig (49) p ; s  @ 

Nevertheless, this p rocess  of i teration requi res  that we know the series 

solutions (44) and (45), which in turn  can only be obtained af te r  the numerical  

values of Lo, p a r e  introduced. It is at this stage that a differential co r rec -  

tion scheme untangles the situation, assuming, of course,  E to  be reasonably 

small. 

approximate relation L o  = L.(O), p. = l . ( O )  and construct a n  approximate 

orbit  given by Eqs. (44) and (45). Once these se r i e s  a r e  known, better 

values for  Li and p i  can be found by one i teration of Eqs. (48) and (49). 

new orbit is then obtained in the form given again by Eqs. (44) and (45). 

i teration of such a process  f o r  small E will usually converge to the desired 

a c curacy. 

w a  

Thus, given the initial conditions [L(O), .f(O)] , we can assume the 
u 

i 1 1 1 

0 A 

The 
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Suppose, therefore ,  we have provisional o r  definitive values of L o  and 

The functions aFo/aLi ,  aFp/8Li,  8 F  /Elli (p = 1,2, 3 , .  . . , N) and their  
i 

P i .  P 
partial  derivatives up to  o rde r  N can then be reduced to Four i e r  s e r i e s  with 

numerical  coefficients. Le t  

and 

The numbers A, B, c,  D a r e  readily related to  the coefficients of the se r i e s  

X, Y defined by relations (30) and ( 3 2 ) ,  and the numbers M give the values 

of the functions Z .  In fact, 
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k 
w 

and 

k 
vy- 

In  the above relations we must  have 

n = 0 , 1 , 2 ,  . . . ,  N 

a = 0 , 1 , 2 ,  ..., n 

P=O,1,2 ,  . . ., n - a  

y =  0,1,2, ..., n - a  - P  

6 = 0,1,2, . . . ,  a 
p =  0,1,2, ..., a - 6  

and the maximum value of 1 kl, M 
sought. 

mus t  be decided according to the precision 
P’ Y 
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It is worthwhile to note that the i teration f rom the initial conditions to 

the constants of integration is a l so  needed in  the classical  theories generated 

by von Zeipel ' s  method. The essent ia l  differences a r e  that we a r e  able he re  

to write rapidly the equations f o r  any order  of approximation and that we can 

perform a numerical  harmonic analysis of the right-hand members  of the 

differential equations of motion, however complicated they might be, using 

as many points a s  necessary to reach a prescr ibed precision in the final 

solution. 

We have made no distinction between short-periodic, long-periodic, and 

secular  perturbations, which a r e  t reated globally by the method described. 

However, such a distinction is always possible by simple elimination of the 

t e r m s  not needed in the Four i e r  se r ies .  

In conclusion, we emphasize that if one is ready to elaborate long 

trigonometric se r ies ,  ei ther by hand o r  by computer, ei ther numerically or 

analytically, the theory we have described can be extended in a simple and 

systematic way to any order  of approximation. 
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